Exposés

Simon Allais : De la conjecture de Hofer-Zehnder dans les espaces projectifs à poids
 
La conjecture de Hofer-Zehnder affirme grossièrement qu’en dynamique hamiltonienne, avoir plus d’orbites périodiques que le minimum possible impose d’avoir une infinité d’orbites périodiques. Nous donnerons un sens précis à cette conjecture dans le cas des espaces projectifs à poids ainsi qu’un théorème en prouvant une version affaiblie. Il s’agit d’une généralisation à un cadre singulier (les espaces projectifs à poids étant des orbifolds) d’un théorème de Shelukhin. Si le temps le permet, nous esquisserons la méthode de démonstration, reposant sur l’étude de code-barres associés à la théorie de Morse des fonctions génératrices.

Oussama Bensaid : Coarse embeddings and homological filling functions

Introduced by Gromov in the 80's, coarse embeddings are a generalization of quasi-isometric embeddings when the control functions are not necessarily affine. We will be particularly interested in the obstructions to the existence of such embeddings between symmetric spaces of noncompact type, Euclidean buildings, CAT(0) spaces and mapping class groups. We show that, like in the quasi-isometric case, the rank (the maximal dimension of a flat/quasi-flat) is monotonous under coarse embeddings, provided that there is no Euclidean factor in the domain, or a Euclidean factor of dimension 1. The proof involves higher homological filling functions.


Yassine Guerch : Croissance de l'homologie et nombres de Betti l2 du groupe des automorphismes extérieurs d'un groupe de Coxeter universel

Soient n ≥ 3 et Out(Wn) le groupe des automorphismes extérieurs d'un groupe de Coxeter universel Wn de rang n, produit libre de n copies d'un groupe cyclique d'ordre 2. Dans cet exposé, nous présentons des résultats sur la croissance de la dimension des groupes d'homologie (à coefficients dans un corps quelconque) de sous-groupes d'indice fini distingués du groupe Out(Wn).

Dans un travail en commun avec Damien Gaboriau et Camille Horbez, nous montrons que, pour tout degré au plus égal à ⌊n/2⌋-1, la croissance de tels nombres de Betti est au plus sous-linéaire avec l'indice du sous-groupe. Ceci implique, par le théorème d'approximation de Lück, que les nombres de Betti l2 de Out(Wn) s'annulent jusqu'au degré ⌊n/2⌋-1.

Nous présentons également des éléments de la démonstration, qui repose sur une méthode introduite par Abért, Bergeron, Fraczyk et Gaboriau. L'action par isométries de Out(Wn) sur un complexe simplicial appelé le complexe des W2-bases partielles de Wn joue un rôle clé.


Antoine Meddane : Morse Inequalities for Axiom A flows

Axiom A flows are flows introduced by Smale in the 60' to generalise the geodesic flows on negatively curved manifolds (and more generally the Anosov flows) and the Morse gradient flows. The dynamics of the latest are well-known to be related to the topology of the underlying manifold, notably through Morse inequalities. After presenting the Axiom A flows, we will explain how tools from microlocal analysis can be used in order to obtain general Morse inequalities for Axiom A flows (verifying the strong transversality assumption) which extend the previous ones. This work constitutes a progress towards the links between the dynamics of Axiom A flows and the topology of the underlying manifold.


Neige Paulet : Flots d'Anosov construits par recollement de blocs hyperboliques

Dans cet exposé, je présenterai les flots d'Anosov et leur intérêt dans la théorie des systèmes dynamiques hyperbolique et la topologie des variétés de dimension 3. Récemment, Béguin Bonatti et Yu ont mis au point une technique très générale et puissante qui permet de construire des flots d'Anosov en dimension 3 en recollant des blocs de constructions. Je présenterai une méthode qui généralise les recollements de Béguin-Bonatti-Yu, et permet d’enrichir la classe d’exemples ainsi construits. D’autre part, les blocs de constructions que l’on utilise sont les morceaux d’une décomposition "optimale” d’un flot d’Anosov le long de surfaces incompressibles, et nous permettent de mieux comprendre les interactions avec la topologie de la variété qui le porte.


Bernhard Reinke : The Weierstrass root-finder is not generally convergent

We will give an overview of root-finding methods and their interpretation as complex dynamical systems. The main focus will be the Weierstrass/Durand-Kerner method and its similarities and differences to the Newton and the Ehrlich-Aberth methods.

In particular, we will show how to use methods from computer algebra to investigate (and/or establish) the existence of attracting periodic cycles, as well as diverging orbits, and present explicit examples of both phenomena for the Weierstrass method.


Rym Smai : Globally hyperbolic maximal conformally flat spacetimes with complete photons

A conformally flat spacetime is an oriented and time-oriented Lorentzian manifold which is locally conformal to the Minkowski spacetime. The natural geometrical objects in a conformally flat spacetime are the non-parametrized isotropic geodesics, called photons. In this talk, I will define a notion of completeness of photons. Then, I will give some "classification" results on conformally flat spacetimes satisfying some nice assumptions of causality and containing complete photons. I will end up with some open questions around this topic.


Mireille Soergel : A generalized Davis complex for Dyer groups

First I will introduce Dyer groups. This family of groups has the same solution to the word problem as Coxeter groups and right-angled Artin groups. We will see that every Dyer group is a finite index subgroup of some Coxeter groups. I will also construct actions of Dyer groups on CAT(0) spaces which extend the actions of Coxeter groups on Davis complexes and of right-angled Artin groups on Salvetti complexes.


Marie Trin : Thurston's compactification via geodesic currents: the case of non-compact finite area surfaces

In 1988, Bonahon gave a construction of Thurston’s compactification of Teichmüller space using geodesic currents. In this talk, I will give a description of Bonahon’s argument and explain why it does not apply to non-compact surfaces. I will also use the notion of sequences of random geodesics to present a variant of those arguments which applies to non-compact finite area surfaces.


Paula Truöl : Strongly quasipositive knots are concordant to infinitely many strongly quasipositive knots

Knots are smooth embeddings of the (oriented) circle S1 into R3 (or into the 3-sphere), usually studied up to an equivalence relation called ambient isotopy. A natural generalization in dimension 4 of the question whether certain knots are isotopic to the trivial knot is the concept of concordance, another equivalence relation on the set of knots.

We show that every non-trivial strongly quasipositive knot is smoothly concordant to infinitely many pairwise non-isotopic strongly quasipositive knots. In contrast to our result, it was conjectured by Baker that smoothly concordant strongly quasipositive fibered knots are isotopic. Our construction uses a satellite operation whose companion is a slice knot with maximal Thurston-Bennequin number -1.

In the talk, we will define all the relevant terms necessary to understand the theorem in the title, and explain the context of this result.

Personnes connectées : 2 Vie privée
Chargement...